Increased shear stress with upregulation of VEGF-A and its receptors and MMP-2, MMP-9, and TIMP-1 in venous stenosis of hemodialysis grafts.
نویسندگان
چکیده
Venous injury and subsequent venous stenosis formation are responsible for hemodialysis graft failure. Our hypothesis is that these pathological changes are in part related to changes in wall shear stress (WSS) that results in the activation of matrix regulatory proteins causing subsequent venous stenosis formation. In the present study, we examined the serial changes in WSS, blood flow, and luminal vessel area that occur subsequent to the placement of a hemodialysis graft in a porcine model of chronic renal insufficiency. We then determined the corresponding histological, morphometric, and kinetic changes of several matrix regulatory proteins including VEGF-A, its receptors, matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitor of matrix metalloproteinase (TIMP)-1, and TIMP-2. WSS was estimated by obtaining blood flow and luminal vessel area by performing phase-contrast MRI with magnetic resonance angiography in 21 animals at 1 day after graft placement and prior to death on day 3 (n = 7), day 7 (n = 7), and day 14 (n = 7). At all time points, the mean WSS at the vein-to-graft anastomosis was significantly higher than that at the control vein (P < 0.05). WSS had a bimodal distribution with peaks on days 1 and 7 followed by a significant reduction in WSS by day 14 (P < 0.05 compared with day 7) and a decrease in luminal vessel area compared with control vessels. By day 3, there was a significant increase in VEGF-A and pro-MMP-9 followed by, on day 7, increased pro-MMP-2, active MMP-2, and VEGF receptor (VEGFR)-2 (P < 0.05) and, by day 14, increased VEGFR-1 and TIMP-1 (P < 0.05) at the vein-to-graft anastomosis compared with control vessels. Over time, the neointima thickened and was composed primarily of alpha-smooth muscle actin-positive cells with increased cellular proliferation. Our data suggest that hemodialysis graft placement leads to early increases in WSS, VEGF-A, and pro-MMP-9 followed by subsequent increases in pro-MMP-2, active MMP-2, VEGFR-1, VEGFR-2, and TIMP-1, which may contribute to the development of venous stenosis.
منابع مشابه
Hyperglycemia-Induced Modulation of the Physiognomy and Angiogenic Potential of Fibroblasts Mediated by Matrix Metalloproteinase-2: Implications for Venous Stenosis Formation Associated with Hemodialysis Vascular Access in Diabetic Milieu.
PURPOSE It is hypothesized that venous stenosis formation associated with hemodialysis vascular-access failure is caused by hypoxia-mediated fibroblast-to-myofibroblast differentiation accompanied by proliferation and migration, and that diabetic patients have worse clinical outcomes. The aim of this study was to determine the functional and gene expression outcomes of matrix metalloproteinase-...
متن کاملFluid shear stress regulates metalloproteinase-1 and 2 in human periodontal ligament cells: involvement of extracellular signal-regulated kinase (ERK) and P38 signaling pathways.
Matrix metalloproteinase (MMP)-1, 2, with their endogenous inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1, 2 are critical for extracellular matrix remodeling in human periodontal ligament (PDL) and their expression are sensitive to mechanical stresses. Shear stress as the main type of mechanical stress in tooth movement is involved in matrix turnover. However, how shear stress regul...
متن کاملAbnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenous malformations.
BACKGROUND AND PURPOSE Excessive degradation of the vascular matrix by matrix metalloproteinases (MMPs) can lead to structural instability of vessels. In this study we examined the expression of MMPs and tissue inhibitors of metalloproteinases (TIMPs) in brain arteriovenous malformations (BAVMs). METHODS We performed gelatin zymography for MMPs and Western blot for MMP-9, MMP-2, TIMP-1, TIMP-...
متن کاملMatrix metalloproteinase expression in vein grafts: role of inflammatory mediators and extracellular signal-regulated kinases-1 and -2.
Matrix metalloproteinases (MMPs) play key roles in vascular remodeling. We characterized the role of inflammatory mediators and extracellular signal-regulated kinases (ERKs) in the control of arterialized vein graft expression of MMP-9, MMP-2, and membrane-type 1-MMP (MT1-MMP) and of the tissue inhibitor of metalloproteinases-2 (TIMP-2). For this purpose we used a canine model of jugular vein t...
متن کاملA Study on the Serum Levels of Angiogenic Factors in Response to Acute Long-term Submaximal Exercise in Sedentary Men
Introduction: Exercise training increases skeletal muscle capillary density, but the molecular mechanisms of this process are not yet clear. The aim of the present study was to investigate the effect of acute long- term submaximal exercise on serum vascular endothelial growth factor (VEGF) as the main angiogenic factor, and matrix metalloproteinases 2 and 9 ( MMP-2 and MMP-9), as the degradi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 294 5 شماره
صفحات -
تاریخ انتشار 2008